Highly Efficient Synthesis of Chiral *â***-Amino Acid Derivatives via Asymmetric Hydrogenation**

Wenjun Tang and Xumu Zhang*

*Department of Chemistry, The Pennsyl*V*ania State Uni*V*ersity, 152 Da*V*ey Laboratory, Uni*V*ersity Park, Pennsyl*V*ania 16802*

xumu@chem.psu.edu

Received September 19, 2002

ABSTRACT

The Rh−**TangPhos complex is an efficient hydrogenation catalyst for making chiral** *â***-amino acid derivatives. With the Rh**−**TangPhos system, high enantioselectivities (up to 99.6%) and turnover numbers have been obtained in the hydrogenation of** *E***/***Z* **isomeric mixtures of both** *â***-alkyl and** *â***-aryl** *â***-(acylamino)acrylates.**

The synthesis of chiral *â*-amino acids has drawn a great deal of attention due to its importance in biomedical research and the pharmaceutical industry. Enantiomerically pure β -amino acids and their derivatives have been used as important building blocks for the synthesis of β -peptides, β -lactam antibiotics, and many important drugs. $¹$ Although several</sup> stoichiometric and catalytic methods have been reported for the synthesis of β -amino acids,² a practical and efficient synthesis is still highly desirable. Direct hydrogenation of 3-aminoacrylic acid derivatives represents one of the simplest and most efficient routes. While good to excellent enantioselectivities have been reported in Ru^{-3} or Rh-catalyzed⁴ asymmetric hydrogenation of (*E*)-*â*-(acylamino)acrylates derivatives with the use of chiral bisphosphine ligands such as BINAP,³ BICP,⁴ DuPhos,^{4b,c} and BisP^{*},^{4a} the results of hydrogenation of (*Z*)-*â*-(acylamino)acrylates derivatives are less than satisfying.5 For example, hydrogenation of (*E*) methyl 3-acetamido-2-butenoate with an Ru-BINAP system gave 96% ee, while (*Z*)-methyl 3-acetamido-2-butenoate gave only 5% ee with the opposite configuration. Since both (*Z*)-

^{(1) (}a) Hoekstra, W. J., Ed. The Chemistry and Biology of *â*-Amino Acids. *Curr. Med. Chem.* 1999, 6, 905. (b) *Enantioselective Synthesis of â-Amino Acids*; Juaristi, E., Ed.; Wiley-VCH: New York, 1997. (c) Guenard, D.; Guritte-Voegelein, R.; Potier, P. *Acc. Chem. Res.* **1993**, *26*, 160.

^{(2) (}a) Tang, T.; Ellman, J. A. *J. Org. Chem.* **1999**, *64*, 12. (b) Sibi, M. P.; Shay, H. J.; Liu, M.; Jasperse, C. P. *J. Am. Chem. Soc.* **1998**, *120*, 6615. (c) Kobayashi, S.; Ishitani, H.; Ueno, M. *J. Am. Chem. Soc.* **1998**, *120*, 431. (d) Chung, X. X. *Tetrahedron: Asymmetry* **1997**, *8*, 5. (e) Dumas, F.; Mezrhab, B.; d'Angelo, J. *J. Org. Chem.* **1996**, *61*, 2293. (f) Davis, F. A.; Szewczyk, J. M.; Reddy, R. E. *J. Org. Chem.* **1996**, *61*, 2222. (g) Enders, D.; Wahl, H.; Bettray, W. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 455. (h) Wang, Z.-M.; Kolb, H. C.; Sharpless, K. B. *J. Org. Chem.* **1994**, *59*, 5104. (i) Hattori, K.; Miyata, M.; Yamamoto, H. *J. Am. Chem. Soc*. **1993**, *115*, 1151. (j) Bunnage, M. E.; Davies, S. G.; Goodwin, C. J. *J. Chem. Soc.,*

Perkin Trans. 1 **1993**, 1375. (k) Juaristi, E.; Escalante, J.; Lamatsch, B.; Seebach, D. *J. Org. Chem.* **1992**, *57*, 2396. (l) Deng, L.; Jacobsen, E. N. *J. Org. Chem.* **1992**, *57*, 4320. (m) Hawkins, J. M.; Fu, G. C. *J. Org. Chem.* **1986**, *51*, 2820.

⁽³⁾ Lubell, W. D.; Kitamura, M.; Noyori, R. *Tetrahedron: Asymmetry* **1991**, *2*, 543.

^{(4) (}a) Yasutake, M.; Gridnev, I. D.; Higashi, N.; Imamoto, T. *Org. Lett.* **2001**, *3*, 1701. (b) Heller, D.; Holz, J.; Drexler, H. J.; Lang, J.; Drauz, K.; Krimmer, H.-P.; Börner, A. *J. Org. Chem.* 2001, 66, 6816. (c) Zhu, G.; Chen, Z.; Zhang, X. *J. Org. Chem.* **1999**, *64*, 6907. (d) Furukawa, M.; Okawara, T.; Noguchi, Y.; Terawaki, Y. *Chem. Pharm. Bull.* **1979**, *27*, 2223. (e) Achiwa, K.; Soga, T. *Tetrahedron Lett*. **1978**, 1119.

⁽⁵⁾ Lee recently reported a new ligand, BMDPI, which shows good ees for both (*Z*)- and (*E*)-isomeric substrates, see: Lee, S.-G.; Zhang, Y. J. *Org. Lett*. **2002**, *4*, 2429.

and (*E*)-isomeric substrates are formed simultaneously in most synthetic protocols, the development of a new catalytic system that can work well for both isomeric substrates is needed. This is especially important in the situation where the (*Z*)- and (*E*)-substrates cannot be easily separated and only their mixture can be employed as the starting material. Herein, we disclose a new catalyst, the Rh-TangPhos system, for hydrogenation of *â*-aminoacrylic acid derivatives. High enantioselectivities have been obtained for both (*Z*) and (*E*)-isomeric substrates with the Rh-TangPhos system.

We have previously demonstrated that the Rh-TangPhos complexes are highly efficient catalysts for hydrogenation of dehydroamino acids and *E*/*Z* mixtures of enamides.6 The structure of TangPhos has been confirmed by comparison with the X-ray structure of its corresponding phosphine sufide **1**⁷ (Figure 1). To further expand the utility of this electronic-

Figure 1. Structure of TangPhos and its phosphine sulfide **1**.

rich phosphine in asymmetric hydrogenation, the Rh-TangPhos system was employed for hydrogenation of both (*Z*)- and (*E*)-isomers of methyl 3-acetamido-2-butenoate. (Table 1) The hydrogenation was conducted at room temperature under 20 psi of H_2 in the presence of 0.5 mol %

Table 1. Solvent Effect of Hydrogenation of Methyl 3-Acetamido-2-butenoate with the Rh-TangPhos System

H_3C	COOMe [Rh(TangPhos)nbd]SbF ₆ NHAc solvent, H ₂ , rt (E) -2 or/and (Z) -2	COOMe NHAc H_3C 3		
			conversion	ee
entry ^a	substrate	solvent	$(\%)$	$(\%)$
1	(E) -2	CH ₃ OH	100	97.0
2	(E) -2	THF	100	99.6
3	(E) -2	toluene	82	98.0
4	(E) -2	CH_2Cl_2	100	99.4
5	(E) -2	EtOAc	100	99.5
6	$(Z)-2$	CH ₃ OH	13	83.7
7	$(Z)-2$	THF	100	98.5
8	$(Z)-2$	toluene	55	96.9
9	$(Z)-2$	CH_2Cl_2	88	98.5
10	(Z) -2	EtOAc	99	98.5
11	$(E) - 2/(Z) - 2(1:1)$	THF	100	99.5

^a Absolute configurations were determined to be *R* by comparing the optical rotations with reported values. Reactions were carried out under 20 psi of H2 in solvent at room temperature for 24 h. Substrate/[Rh(Tang-Phos)nbd]SbF₆ = 200:1. The ees were determined by chiral GC using a chiralselect 1000 column.

[Rh(TangPhos)nbd]SbF₆ (nbd = 3,5-norbornadiene) as the catalyst precursor. It was found that, with the Rh-TangPhos catalyst, both (*Z*)- and (*E*)-isomers were hydrogenated to form (*R*)-methyl 3-acetamidobutanoate. Our study showed that the solvent had a pronounced influence on both the reactivity and the enantioselectivity of the reaction (Table 1). While the (*E*)-isomer showed complete conversions in most solvents except toluene (entries $1-5$), the (Z) -isomer showed lower reactivities (entries $6-10$). THF was found to be an excellent solvent for the reaction, as complete conversions were obtained for both (*Z*)- and (*E*)-isomers. To our surprise, excellent enantioselectivities ($E = 99.6\%$ ee; $Z = 98.5\%$ ee) were obtained for both (*Z*)- and (*E*)-isomers (entries 2 and 7). *To the best of our knowledge, these are* among the highest enantioselectivities to date for hydrogena*tion of methyl 3-acetamido-2-butenoate, especially for hydrogenation of the (Z)-isomer* (other ligands: Me-DuPhos, 87.8% ee;4b BICP, 86.9% ee;4c BINAP, 5% ee3). A 1:1 *E*/*Z* isomeric mixture of methyl 3-acetamido-2-butenoate was also subjected to hydrogenation. When THF was used as the solvent, (*R*)-methyl 3-acetamidobutanoate was obtained in 100% yield and 99.5% ee (entry 11). The H_2 pressure had a large influence on the enantioselectivity. Higher H_2 pressure deteriorated the ee, which was consistent with Börner's observation.4b When the hydrogenation of the 1:1 *E*/*Z* isomeric mixture was conducted under 80 psi of H_2 pressure, a lower ee (96.5%) was obtained.

To test the synthetic utilities of the Rh-TangPhos system for the synthesis of β -amino acid derivatives, a series of β -alkyl- and β -aryl-substituted β -(acylamino)acrylates were tested for hydrogenation. As shown in Table 2, a wide array of *â*-alkyl and *â*-aryl *â*-amino acid derivatives were obtained in excellent ees. For hydrogenation of (E) - β -alkyl β -(acylamino)acrylates, extremely high enantioselectivities (98- 100%) have been obtained (entries 1 and $3-6$). These results are comparable with those obtained with Imamoto's BisP*.4a Entries 1 and 2 showed another example in which both (*Z*) and (*E*)-isomeric substrates gave the hydrogenation product with the same configuration in high ees. These results further demonstrated that an E/Z mixture of β -(acylamino)acrylates could be hydrogenated in high ee with the Rh-TangPhos system.

Asymmetric hydrogenation of *â*-aryl *â*-(acylamino)acrylates remains a challenging task. Since the (*Z*)- and (*E*) isomeric substrates are not separable by column chromatography, hydrogenation of their *E*/*Z* mixtures is crucial for the synthesis of chiral β -aryl β -amino acid derivatives. While many β -aryl β -amino acid derivatives have been important intermediates for drug synthesis,⁸ little success has been

⁽⁶⁾ Tang, W.; Zhang, X. *Angew. Chem., Int. Ed.* **2002**, *41*, 1612.

⁽⁷⁾ Crystallographic data for the X-ray structure of **1** have been deposited with Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-190907. For a graphical structure, see Supporting Information.

^{(8) (}a) Boesch, H.; Cesco-Cancian, S.; Hecker, L. R.; Hoekstra, W. J.; Justus, M.; Maryanoff, C. A.; Scott, L.; Shah, R. D.; Solms, G.; Sorgi, K. L.; Stefanick, S. M.; Thurnheer, U.; Villani, F. J., Jr.; Walker, D. G. *Org. Process Res. De*V*.* **²⁰⁰¹**, *⁵*, 23. (b) Hoekstra, W. J.; Maryanoff, B. E.; Damiano, B. P.; Andrade-Gordon, P.; Cohen, J. H.; Costanzo, M. J.; Haertlein, B. J.; Hecker, L. R.; Hulshizer, B. L.; Kauffman, J. A.; Keane, P.; McComsey, D. F.; Mitchell, J. A.; Scott, L.; Shah, R. D.; Yabut, S. C. *J. Med. Chem.* **1999**, *42*, 5254. (c) Zhong, H. M.; Cohen, J. H.; Abdel-

Table 2. Hydrogenation of *â*-Alkyl or *â*-Aryl $$\beta$ -(Acylamino)acrylates with the Rh-TangPhos System$

OOR ₂ NHAc R		[Rh(TangPhos)(nbd)]SbF ₆			OOR ₂	
		rt, H_2 (20 psi), 24 h, THF R.			NHAc	
4					5	
entry ^a	R_1	R,	geometry ^{c}	ee b (%)	configuration	
1	Мe	Et (E) -4a)	Е	99.5(5a)	R	
$\overline{2}$	Me	Et $((Z)-4a)$	Ζ	97.3(5a)	R	
3	Me	i -Pr $(4b)$	E	99.3(5b)	R	
4	Et	Me $(4c)$	E	99.6(5c)	R	
5	$n\text{-}Pr$	Et(4d)	E	99.6(5d)	R	
6	<i>i</i> -Bu	Me $(4e)$	E	98.5(5e)	R	
7	Ph	Me $(4f)$	EΙZ	93.8(5f)	\boldsymbol{S}	
8	$\n p\text{-F-Ph}$	Me $(4g)$	EΙZ	95.0(5g)	\boldsymbol{S}	
9	p -Cl-Ph	Me $(4h)$	E/Z	92.3(5h)	\boldsymbol{S}	
10	p -Br-Ph	Me(4i)	EΙZ	95.1(5i)	\boldsymbol{S}	
11	p -Me-Ph	Me $(4i)$	EΙZ	94.0(5i)	$\cal S$	
12	p -MeO-Ph	Me $(4k)$	EΙZ	98.5^d (5k)	\boldsymbol{S}	
13	p -BnO-Ph	Me(4l)	EΙZ	98.5 (51)	\overline{S}	
14	o -Me-Ph	Me(4m)	EΙZ	74.3(5m)	$\cal S$	
15	o-MeO-Ph	Me(4n)	EΙZ	83.1(5n)	\overline{S}	

 a Reactions were carried out under 20 psi of H_2 in THF at room temperature for 24 h. Substrate/[Rh(TangPhos)nbd] $SbF_6 = 200:1$. Absolute configurations were determined by comparing the optical rotations with reported values. *^b* The ee (%) values were determined by chiral GC using a Chiralselect 1000 column. *^c* For *E*/*Z* ratios of *E*/*Z* mixtures, see refs 4c and 8. *^d* The ee was determined by chiral HPLC using an (*s*,*s*)-whelk-01 column.

achieved for their syntheses through asymmetric hydrogenation. Previous reports showed only moderate ees with Rh-DuPhos,^{4c} Rh-BICP,^{4c} and Ru-BINAP³ systems. We recently developed a Ru-*o*-BINAPO system for the hydrogenation of β -aryl β -(acylamino)acrylates.⁹ Although excellent ees were obtained, the catalytic efficiencies were low (less than 100 turnovers). We found that the Rh-TangPhos system is very efficient for this type of substrate. As shown in Table 2 (entries $7-15$), good to excellent ees $(74.3-$ 98.5%) have been obtained for a series of β -aryl β -(acylamino)acrylates. While no major electronic effect was observed for para-substituted *â*-aryl *â*-(acylamino)acrylates, electron-rich substrates gave slightly higher ees (entries 12 and 13). For ortho-substituted *â*-aryl *â*-(acylamino)acrylates, lower enantioselectivities were observed (entries 14 and 15). To further demonstrate the catalytic efficiency of the Rh-TangPhos system for hydrogenation of *â*-(acylamino) acrylates, **4l** was subjected to hydrogenation in THF under 20 psi of H_2 in the presence of 0.1 mol % [Rh(TangPhos)nbd]SbF6. The product (*S*)-**5l** was obtained in 100% yield and in 98.5% ee (TON $= 1000$), with no deterioration of enantioselectivity.

In conclusion, an efficient catalytic system for rhodiumcatalyzed asymmetric hydrogenation of *â*-(acylamino)acrylates has been developed. With TangPhos as the chiral ligand, high enantioselectivities (up to 99.6%) and turnover numbers have been obtained in the hydrogenation of *E*/*Z* isomeric mixtures of both β -alkyl and β -aryl β -(acylamino)acrylates. Under these conditions, a variety of chiral β -alkyl and β -aryl $β$ -amino acids can be efficiently synthesized. Since the substrates are easy to prepare according to known procedures, $4c,9$ the Rh-TangPhos system provides an efficient and practical way for making chiral *â*-amino acid derivatives.

Acknowledgment. This work was supported by grants from the National Institutes of Health.

Supporting Information Available: X-ray structure of **1**, experimental procedure for hydrogenation, and analytical data of new substrates and products. This material is available free of charge via the Internet at http://pubs.acs.org.

Magid, A. F.; Kenney, B. D.; Maryanoff, C. A.; Shah, R. D.; Villani, F. J.,
LOCO26935X Jr.; Zhang, F.; Zhang, X. *Tetrahedron Lett.* **1999**, *40*, 7721. (d) Shankar, B. B.; Kirkup, M. P.; McCombie, S. W.; Clader, J. W.; Ganguly, A. K. *Tetrahedron Lett.* **1996**, *37*, 4095. (e) Burnett, D. A.; Caplen, M. A.; Davis, H. R., Jr.; Burrier, R. E.; Clader, J. W. *J. Med. Chem.* **1994**, *59*, 1733.

⁽⁹⁾ Zhou, Y.-G.; Tang, W.; Wang, W.-B.; Li, W.; Zhang, X. *J. Am. Chem. Soc.* **2002**, *124*, 4952.